Linear Regression
Linear Regression is a standard machine learning algorithm used for prediction. This post is about implementing the analytical method for regression.
import csv
import random
import math
import operator
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from scipy.stats import pearsonr
import seaborn as sns
def preprocessLinearRegression(filename, X=[], Y=[]):
with open(filename, 'rt') as csvfile:
lines = csv.reader(csvfile)
next(lines, None)
dataset = list(lines)
for i in range(len(dataset)):
for j in range(len(dataset[0])):
dataset[i][j] = float(dataset[i][j])
dataset1 = [row for row in dataset if row[-1] != 0]
for row in dataset1:
X.append(row)
def LinearRegressionTrain():
X = []; Y = []
preprocessLinearRegression('Data_training.csv', X, Y)
X = np.array(X)
Y = [row[-1] for row in X]
Y = np.array(Y)
# plt.hist(Y, bins=100); plt.xlabel("Y"); plt.ylabel("Frequency"); plt.show()
# plt.hist(np.log(Y), bins=100);plt.xlabel("log of Y");plt.ylabel("Frequency");plt.show()
X = np.delete(X, 12, axis=1)
X = np.insert(X,0,1,axis=1)
xTranspose = X.transpose()
w = np.dot(xTranspose,X)
w = np.linalg.pinv(w)
w = np.dot(w,xTranspose)
w = np.dot(w,Y)
print("w : "); print(w)
LinearRegressionTest(w)
def LinearRegressionTest(w):
X = []; Y = []; RSS=0.0
preprocessLinearRegression('Data_test.csv', X, Y)
X = np.array(X)
Y = [row[-1] for row in X]
Y = np.array(Y)
X = np.delete(X, 12, axis=1)
X = np.insert(X, 0, 1, axis=1)
temp = ((Y - np.dot(X,w)) **2)
for row in temp:
RSS += row
print("RSS: " + repr(RSS))
print(pearsonr(np.dot(X,w),Y))
LinearRegressionTrain()